33 research outputs found

    Appreciating methodological complexity and integrating neurobiological perspectives to advance the science of resilience

    Get PDF
    Kalisch and colleagues identify several routes to a better understanding of mechanisms underlying resilience and highlight the need to integrate findings from neuroscience and animal learning. We argue that appreciating methodological complexity and integrating neurobiological perspectives will advance the science of resilience and ultimately help improve the lives of those exposed to stress and adversit

    Modern Views of Machine Learning for Precision Psychiatry

    Full text link
    In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research

    Impact of Cannabis Use on Treatment Outcomes among Adults Receiving Cognitive-Behavioral Treatment for PTSD and Substance Use Disorders

    Full text link
    Background: Research has demonstrated a strong link between trauma, posttraumatic stress disorder (PTSD) and substance use disorders (SUDs) in general and cannabis use disorders in particular. Yet, few studies have examined the impact of cannabis use on treatment outcomes for individuals with co-occurring PTSD and SUDs. Methods: Participants were 136 individuals who received cognitive-behavioral therapies for co-occurring PTSD and SUD. Multivariate regressions were utilized to examine the associations between baseline cannabis use and end-of-treatment outcomes. Multilevel linear growth models were fit to the data to examine the cross-lagged associations between weekly cannabis use and weekly PTSD symptom severity and primary substance use during treatment. Results: There were no significant positive nor negative associations between baseline cannabis use and end-of-treatment PTSD symptom severity and days of primary substance use. Cross-lagged models revealed that as cannabis use increased, subsequent primary substance use decreased and vice versa. Moreover, results revealed a crossover lagged effect, whereby higher cannabis use was associated with greater PTSD symptom severity early in treatment, but lower weekly PTSD symptom severity later in treatment. Conclusion: Cannabis use was not associated with adverse outcomes in end-of-treatment PTSD and primary substance use, suggesting independent pathways of change. The theoretical and clinical implications of the reciprocal associations between weekly cannabis use and subsequent PTSD and primary substance use symptoms during treatment are discussed

    Applications of Latent Growth Mixture Modeling and allied methods to posttraumatic stress response data

    No full text
    Background: Scientific research into mental health outcomes following trauma is undergoing a revolution as scientists refocus their efforts to identify underlying dimensions of health and psychopathology. This effort is in stark contrast to the previous focus which was to characterize individuals based on Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnostic status (Insel et al., 2010). A significant unresolved issue underlying this shift is how to characterize clinically relevant populations without reliance on the categorical definitions provided by the DSM. Classifying individuals based on their pattern of stress adaptation over time holds significant promise for capturing inherent inter-individual heterogeneity as responses including chronicity, recovery, delayed onset, and resilience can only be determined longitudinally (Galatzer-Levy & Bryant, 2013) and then characterizing these patterns for future research (Depaoli, Van de Schoot, Van Loey, & Sijbrandij, 2015). Such an approach allows for the identification of phenominologically similar patterns of response to diverse extreme environmental stressors (Bonanno, Kennedy, Galatzer-Levy, Lude, & Elfstom, 2012; Galatzer-Levy & Bonanno, 2012; Galatzer-Levy, Brown, et al., 2013; Galatzer-Levy, Burton, & Bonanno, 2012) including translational animal models of stress adaptation (Galatzer-Levy, Bonanno, Bush, & LeDoux, 2013; Galatzer-Levy, Moscarello, et al., 2014). The empirical identification of heterogeneous stress response patterns can increase the identification of mechanisms (Galatzer-Levy, Steenkamp, et al., 2014), consequences (Galatzer-Levy & Bonanno, 2014), treatment effects (Galatzer-Levy, Ankri, et al., 2013), and prediction (Galatzer-Levy, Karstoft, Statnikov, & Shalev, 2014) of individual differences in response to trauma. Method: Methodological and theoretical considerations for the application of Latent Growth Mixture Modeling (LGMM) and allied methods such as Latent Class Growth Analysis (LCGA) for the identification of heterogeneous populations defined by their pattern of change over time will be presented (Van De Schoot, 2015). Common pitfalls including non-identification, over identification, and issues related to model specification will be discussed as well as the benefits of applying such methods along with the theoretical grounding of such approaches. Conclusions: LGMM and allied methods have significant potential for improving the science of stress pathology as well as our understanding of healthy adaptation (resilience)

    Appreciating methodological complexity and integrating neurobiological perspectives to advance the science of resilience

    Full text link
    Kalisch and colleagues identify several routes to a better understanding of mechanisms underlying resilience and highlight the need to integrate findings from neuroscience and animal learning. We argue that appreciating methodological complexity and integrating neurobiological perspectives will advance the science of resilience and ultimately help improve the lives of those exposed to stress and adversity

    Trajectories of depression following spousal and child bereavement: a comparison of the heterogeneity in outcomes

    No full text
    Our understanding of how individuals react to the loss of a close loved one comes largely from studies of spousal bereavement. The extent to which findings are relevant to other bereavements is uncertain. A major methodological limitation of current studies has been a reliance on retrospective reporting of functioning and use of samples of individuals who have self-selected for participant in grief research. To address these limitations, in the current study we applied Latent Growth Mixture Modelling (LGMM) in a prospective population-based sample to identify trajectories of depression following spousal and child bereavement in later life. The sample consisted of 2512 individual bereaved adults who were assessed once before and three times after their loss. Four discrete trajectories were identified: Resilience (little or no depression; 68.2%), Chronic Grief (an onset of depression following loss; 13.2%), Depressed-Improved (high pre-loss depression that decreased following loss; 11.2%), and Pre-existing Chronic Depression (high depression at all assessments; 7.4%). These trajectories were present for both child and spousal loss. There was some evidence that child loss in later life was associated more strongly with the Chronic Grief trajectory and less strongly with the Resilience trajectory. However these differences disappeared when covariates were included in the model. Limitations of the analyses are discussed. These findings increase our understanding of the variety of outcomes following bereavement and underscore the importance of using prospective designs to map heterogeneity of response outcomes. (C) 2015 Elsevier Ltd. All rights reserved

    Data Science in the Research Domain Criteria Era: Relevance of Machine Learning to the Study of Stress Pathology, Recovery, and Resilience

    No full text
    Diverse environmental and biological systems interact to influence individual differences in response to environmental stress. Understanding the nature of these complex relationships can enhance the development of methods to (1) identify risk, (2) classify individuals as healthy or ill, (3) understand mechanisms of change, and (4) develop effective treatments. The Research Domain Criteria initiative provides a theoretical framework to understand health and illness as the product of multiple interrelated systems but does not provide a framework to characterize or statistically evaluate such complex relationships. Characterizing and statistically evaluating models that integrate multiple levels (e.g. synapses, genes, and environmental factors) as they relate to outcomes that are free from prior diagnostic benchmarks represent a challenge requiring new computational tools that are capable to capture complex relationships and identify clinically relevant populations. In the current review, we will summarize machine learning methods that can achieve these goals
    corecore